Coding
Conditional diffusion mnist
script.py is a minimal, self-contained implementation of a conditional diffusion model. It learns to generate MNIST digits, conditioned on a class label. The neural network architecture is a small U-Net. This code is modified from this excellent repo which does unconditional generation. The diffusion model is a Denoising Diffusion Probabilistic Model (DDPM).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
'''
This script does conditional image generation on MNIST, using a diffusion model
This code is modified from,
https://github.com/cloneofsimo/minDiffusion
Diffusion model is based on DDPM,
https://arxiv.org/abs/2006.11239
The conditioning idea is taken from 'Classifier-Free Diffusion Guidance',
https://arxiv.org/abs/2207.12598
This technique also features in ImageGen 'Photorealistic Text-to-Image Diffusion Modelswith Deep Language Understanding',
https://arxiv.org/abs/2205.11487
'''
from typing import Dict, Tuple
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import models, transforms
from torchvision.datasets import MNIST
from torchvision.utils import save_image, make_grid
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
import numpy as np
class ResidualConvBlock(nn.Module):
def __init__(
self, in_channels: int, out_channels: int, is_res: bool = False
) -> None:
super().__init__()
'''
standard ResNet style convolutional block
'''
self.same_channels = in_channels==out_channels
self.is_res = is_res
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, 1, 1),
nn.BatchNorm2d(out_channels),
nn.GELU(),
)
self.conv2 = nn.Sequential(
nn.Conv2d(out_channels, out_channels, 3, 1, 1),
nn.BatchNorm2d(out_channels),
nn.GELU(),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.is_res:
x1 = self.conv1(x)
x2 = self.conv2(x1)
# this adds on correct residual in case channels have increased
if self.same_channels:
out = x + x2
else:
out = x1 + x2
return out / 1.414
else:
x1 = self.conv1(x)
x2 = self.conv2(x1)
return x2
class UnetDown(nn.Module):
def __init__(self, in_channels, out_channels):
super(UnetDown, self).__init__()
'''
process and downscale the image feature maps
'''
layers = [ResidualConvBlock(in_channels, out_channels), nn.MaxPool2d(2)]
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class UnetUp(nn.Module):
def __init__(self, in_channels, out_channels):
super(UnetUp, self).__init__()
'''
process and upscale the image feature maps
'''
layers = [
nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
ResidualConvBlock(out_channels, out_channels),
ResidualConvBlock(out_channels, out_channels),
]
self.model = nn.Sequential(*layers)
def forward(self, x, skip):
x = torch.cat((x, skip), 1)
x = self.model(x)
return x
class EmbedFC(nn.Module):
def __init__(self, input_dim, emb_dim):
super(EmbedFC, self).__init__()
'''
generic one layer FC NN for embedding things
'''
self.input_dim = input_dim
layers = [
nn.Linear(input_dim, emb_dim),
nn.GELU(),
nn.Linear(emb_dim, emb_dim),
]
self.model = nn.Sequential(*layers)
def forward(self, x):
x = x.view(-1, self.input_dim)
return self.model(x)
class ContextUnet(nn.Module):
def __init__(self, in_channels, n_feat = 256, n_classes=10):
super(ContextUnet, self).__init__()
self.in_channels = in_channels
self.n_feat = n_feat
self.n_classes = n_classes
self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)
self.down1 = UnetDown(n_feat, n_feat)
self.down2 = UnetDown(n_feat, 2 * n_feat)
self.to_vec = nn.Sequential(nn.AvgPool2d(7), nn.GELU())
self.timeembed1 = EmbedFC(1, 2*n_feat)
self.timeembed2 = EmbedFC(1, 1*n_feat)
self.contextembed1 = EmbedFC(n_classes, 2*n_feat)
self.contextembed2 = EmbedFC(n_classes, 1*n_feat)
self.up0 = nn.Sequential(
# nn.ConvTranspose2d(6 * n_feat, 2 * n_feat, 7, 7), # when concat temb and cemb end up w 6*n_feat
nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, 7, 7), # otherwise just have 2*n_feat
nn.GroupNorm(8, 2 * n_feat),
nn.ReLU(),
)
self.up1 = UnetUp(4 * n_feat, n_feat)
self.up2 = UnetUp(2 * n_feat, n_feat)
self.out = nn.Sequential(
nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1),
nn.GroupNorm(8, n_feat),
nn.ReLU(),
nn.Conv2d(n_feat, self.in_channels, 3, 1, 1),
)
def forward(self, x, c, t, context_mask):
# x is (noisy) image, c is context label, t is timestep,
# context_mask says which samples to block the context on
x = self.init_conv(x)
down1 = self.down1(x)
down2 = self.down2(down1)
hiddenvec = self.to_vec(down2)
# convert context to one hot embedding
c = nn.functional.one_hot(c, num_classes=self.n_classes).type(torch.float)
# mask out context if context_mask == 1
context_mask = context_mask[:, None]
context_mask = context_mask.repeat(1,self.n_classes)
context_mask = (-1*(1-context_mask)) # need to flip 0 <-> 1
c = c * context_mask
# embed context, time step
cemb1 = self.contextembed1(c).view(-1, self.n_feat * 2, 1, 1)
temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
cemb2 = self.contextembed2(c).view(-1, self.n_feat, 1, 1)
temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
# could concatenate the context embedding here instead of adaGN
# hiddenvec = torch.cat((hiddenvec, temb1, cemb1), 1)
up1 = self.up0(hiddenvec)
# up2 = self.up1(up1, down2) # if want to avoid add and multiply embeddings
up2 = self.up1(cemb1*up1+ temb1, down2) # add and multiply embeddings
up3 = self.up2(cemb2*up2+ temb2, down1)
out = self.out(torch.cat((up3, x), 1))
return out
def ddpm_schedules(beta1, beta2, T):
"""
Returns pre-computed schedules for DDPM sampling, training process.
"""
assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1
sqrt_beta_t = torch.sqrt(beta_t)
alpha_t = 1 - beta_t
log_alpha_t = torch.log(alpha_t)
alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp()
sqrtab = torch.sqrt(alphabar_t)
oneover_sqrta = 1 / torch.sqrt(alpha_t)
sqrtmab = torch.sqrt(1 - alphabar_t)
mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
return {
"alpha_t": alpha_t, # \alpha_t
"oneover_sqrta": oneover_sqrta, # 1/\sqrt{\alpha_t}
"sqrt_beta_t": sqrt_beta_t, # \sqrt{\beta_t}
"alphabar_t": alphabar_t, # \bar{\alpha_t}
"sqrtab": sqrtab, # \sqrt{\bar{\alpha_t}}
"sqrtmab": sqrtmab, # \sqrt{1-\bar{\alpha_t}}
"mab_over_sqrtmab": mab_over_sqrtmab_inv, # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
}
class DDPM(nn.Module):
def __init__(self, nn_model, betas, n_T, device, drop_prob=0.1):
super(DDPM, self).__init__()
self.nn_model = nn_model.to(device)
# register_buffer allows accessing dictionary produced by ddpm_schedules
# e.g. can access self.sqrtab later
for k, v in ddpm_schedules(betas[0], betas[1], n_T).items():
self.register_buffer(k, v)
self.n_T = n_T
self.device = device
self.drop_prob = drop_prob
self.loss_mse = nn.MSELoss()
def forward(self, x, c):
"""
this method is used in training, so samples t and noise randomly
"""
_ts = torch.randint(1, self.n_T+1, (x.shape[0],)).to(self.device) # t ~ Uniform(0, n_T)
noise = torch.randn_like(x) # eps ~ N(0, 1)
x_t = (
self.sqrtab[_ts, None, None, None] * x
+ self.sqrtmab[_ts, None, None, None] * noise
) # This is the x_t, which is sqrt(alphabar) x_0 + sqrt(1-alphabar) * eps
# We should predict the "error term" from this x_t. Loss is what we return.
# dropout context with some probability
context_mask = torch.bernoulli(torch.zeros_like(c)+self.drop_prob).to(self.device)
# return MSE between added noise, and our predicted noise
return self.loss_mse(noise, self.nn_model(x_t, c, _ts / self.n_T, context_mask))
def sample(self, n_sample, size, device, guide_w = 0.0):
# we follow the guidance sampling scheme described in 'Classifier-Free Diffusion Guidance'
# to make the fwd passes efficient, we concat two versions of the dataset,
# one with context_mask=0 and the other context_mask=1
# we then mix the outputs with the guidance scale, w
# where w>0 means more guidance
x_i = torch.randn(n_sample, *size).to(device) # x_T ~ N(0, 1), sample initial noise
c_i = torch.arange(0,10).to(device) # context for us just cycles throught the mnist labels
c_i = c_i.repeat(int(n_sample/c_i.shape[0]))
# don't drop context at test time
context_mask = torch.zeros_like(c_i).to(device)
# double the batch
c_i = c_i.repeat(2)
context_mask = context_mask.repeat(2)
context_mask[n_sample:] = 1. # makes second half of batch context free
x_i_store = [] # keep track of generated steps in case want to plot something
print()
for i in range(self.n_T, 0, -1):
print(f'sampling timestep {i}',end='\r')
t_is = torch.tensor([i / self.n_T]).to(device)
t_is = t_is.repeat(n_sample,1,1,1)
# double batch
x_i = x_i.repeat(2,1,1,1)
t_is = t_is.repeat(2,1,1,1)
z = torch.randn(n_sample, *size).to(device) if i > 1 else 0
# split predictions and compute weighting
eps = self.nn_model(x_i, c_i, t_is, context_mask)
eps1 = eps[:n_sample]
eps2 = eps[n_sample:]
eps = (1+guide_w)*eps1 - guide_w*eps2
x_i = x_i[:n_sample]
x_i = (
self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i])
+ self.sqrt_beta_t[i] * z
)
if i%20==0 or i==self.n_T or i<8:
x_i_store.append(x_i.detach().cpu().numpy())
x_i_store = np.array(x_i_store)
return x_i, x_i_store
def train_mnist():
# hardcoding these here
n_epoch = 20
batch_size = 256
n_T = 400 # 500
device = "cuda:0"
n_classes = 10
n_feat = 128 # 128 ok, 256 better (but slower)
lrate = 1e-4
save_model = False
save_dir = './data/diffusion_outputs10/'
ws_test = [0.0, 0.5, 2.0] # strength of generative guidance
ddpm = DDPM(nn_model=ContextUnet(in_channels=1, n_feat=n_feat, n_classes=n_classes), betas=(1e-4, 0.02), n_T=n_T, device=device, drop_prob=0.1)
ddpm.to(device)
# optionally load a model
# ddpm.load_state_dict(torch.load("./data/diffusion_outputs/ddpm_unet01_mnist_9.pth"))
tf = transforms.Compose([transforms.ToTensor()]) # mnist is already normalised 0 to 1
dataset = MNIST("./data", train=True, download=True, transform=tf)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=5)
optim = torch.optim.Adam(ddpm.parameters(), lr=lrate)
for ep in range(n_epoch):
print(f'epoch {ep}')
ddpm.train()
# linear lrate decay
optim.param_groups[0]['lr'] = lrate*(1-ep/n_epoch)
pbar = tqdm(dataloader)
loss_ema = None
for x, c in pbar:
optim.zero_grad()
x = x.to(device)
c = c.to(device)
loss = ddpm(x, c)
loss.backward()
if loss_ema is None:
loss_ema = loss.item()
else:
loss_ema = 0.95 * loss_ema + 0.05 * loss.item()
pbar.set_description(f"loss: {loss_ema:.4f}")
optim.step()
# for eval, save an image of currently generated samples (top rows)
# followed by real images (bottom rows)
ddpm.eval()
with torch.no_grad():
n_sample = 4*n_classes
for w_i, w in enumerate(ws_test):
x_gen, x_gen_store = ddpm.sample(n_sample, (1, 28, 28), device, guide_w=w)
# append some real images at bottom, order by class also
x_real = torch.Tensor(x_gen.shape).to(device)
for k in range(n_classes):
for j in range(int(n_sample/n_classes)):
try:
idx = torch.squeeze((c == k).nonzero())[j]
except:
idx = 0
x_real[k+(j*n_classes)] = x[idx]
x_all = torch.cat([x_gen, x_real])
grid = make_grid(x_all*-1 + 1, nrow=10)
save_image(grid, save_dir + f"image_ep{ep}_w{w}.png")
print('saved image at ' + save_dir + f"image_ep{ep}_w{w}.png")
if ep%5==0 or ep == int(n_epoch-1):
# create gif of images evolving over time, based on x_gen_store
fig, axs = plt.subplots(nrows=int(n_sample/n_classes), ncols=n_classes,sharex=True,sharey=True,figsize=(8,3))
def animate_diff(i, x_gen_store):
print(f'gif animating frame {i} of {x_gen_store.shape[0]}', end='\r')
plots = []
for row in range(int(n_sample/n_classes)):
for col in range(n_classes):
axs[row, col].clear()
axs[row, col].set_xticks([])
axs[row, col].set_yticks([])
# plots.append(axs[row, col].imshow(x_gen_store[i,(row*n_classes)+col,0],cmap='gray'))
plots.append(axs[row, col].imshow(-x_gen_store[i,(row*n_classes)+col,0],cmap='gray',vmin=(-x_gen_store[i]).min(), vmax=(-x_gen_store[i]).max()))
return plots
ani = FuncAnimation(fig, animate_diff, fargs=[x_gen_store], interval=200, blit=False, repeat=True, frames=x_gen_store.shape[0])
ani.save(save_dir + f"gif_ep{ep}_w{w}.gif", dpi=100, writer=PillowWriter(fps=5))
print('saved image at ' + save_dir + f"gif_ep{ep}_w{w}.gif")
# optionally save model
if save_model and ep == int(n_epoch-1):
torch.save(ddpm.state_dict(), save_dir + f"model_{ep}.pth")
print('saved model at ' + save_dir + f"model_{ep}.pth")
if __name__ == "__main__":
train_mnist()
Tài liệu tham khảo
Internet
Hết.