Một số lưu ý khi triển khai cài đặt với nvidia

Posted by Hao Do on May 15, 2023

Một số lưu ý khi triển khai cài đặt với nvidia

Flash OS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
- Xác định loại nvidia mà mình đang dùng. Mình đã mua nvidia dạng này: https://www.avermedia.com/professional/products?category=Carrier-Board


- Chọn version nên được cài đặt phù hợp với thiết bị của bạn: https://www.avermedia.com/professional/product-detail/NX215


- Link: https://s3.us-west-2.amazonaws.com/storage.avermedia.com/web_release_www/NX215B/BSP/2022-03-16/NX215B-R1.0.11.4.6.zip


Bước 1: Download file ở trên

Để giải nén file dạng tar.gz thì gõ lệnh sau:

sudo tar zxf file.tar.gz

Vào trong folder: JetPack/Linux_for_Tegra 

Gõ: sudo ./setup.sh

Chọn default: rasberry 2

Bước 2: Chuẩn bị SD card

Initialize the SD card and create new ext4 partition.

export sdcard=/dev/sdb

sudo gdisk $sdcard

Link:  https://www.youtube.com/watch?v=kjptoLT7nck

Bước 3: Connext NX to Host

Cái này cần phải kết nối từ từ và cẩn thận.


Nếu gặp lỗi: string not found
sudo apt install binutils

Hoặc lỗi ascii 0x2a...
sudo apt install python-is-python3

Cài đặt Cuda

1
2
3
4
Tham khảo phần video hướng dẫn ở sau: https://youtu.be/LUxyNyCl4ro
https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048

1
2
sudo apt install nvidia-jetpack

If get error then:

1
2
3
4
apt remove
apt remove bluez
apt upgrade
apt install bluez

Install pytorch and torchvision

1
2
3
4
wget https://nvidia.box.com/shared/static/p57jwntv436lfrd78inwl7iml6p13fzh.whl -O torch-1.8.0-cp36-cp36m-linux_aarch64.whlsudo apt-get install python3-pip libopenblas-base libopenmpi-dev libomp-dev
pip3 install Cython
pip3 install numpy torch-1.8.0-cp36-cp36m-linux_aarch64.whl

1
2
3
4
5
6
$ sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev$ git clone --branch v0.9.0 https://github.com/pytorch/vision torchvision   # see below for version of torchvision to download
$ cd torchvision
$ export BUILD_VERSION=0.9.0  # where 0.x.0 is the torchvision version  
$ python3 setup.py install --user
$ cd ../  # attempting to load torchvision from build dir will result in import error
$ pip install 'pillow<9'

Verify

1
2
3
4
5
6
7
8
9
10
11
>>> import torch>>> print(torch.__version__)
>>> print('CUDA available: ' + str(torch.cuda.is_available()))
>>> print('cuDNN version: ' + str(torch.backends.cudnn.version()))
>>> a = torch.cuda.FloatTensor(2).zero_()
>>> print('Tensor a = ' + str(a))
>>> b = torch.randn(2).cuda()
>>> print('Tensor b = ' + str(b))
>>> c = a + b
>>> print('Tensor c = ' + str(c))
>>> import torchvision
>>> print(torchvision.version)

GAN restore image

https://github.com/cszn/BSRGAN/tree/5ce1a9c6ae292f30ccfce4b597ecb73c70401733

Type of file

Install package: https://pypi.org/project/filetype/

Code Lora Gateway and high resolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os.path
import logging
import torch

from utils import utils_logger
from utils import utils_image as util
# from utils import utils_model
from models.network_rrdbnet import RRDBNet as net


"""
Spyder (Python 3.6-3.7)
PyTorch 1.4.0-1.8.1
Windows 10 or Linux
Kai Zhang (cskaizhang@gmail.com)
github: https://github.com/cszn/BSRGAN
        https://github.com/cszn/KAIR
If you have any question, please feel free to contact with me.
Kai Zhang (e-mail: cskaizhang@gmail.com)
by Kai Zhang ( March/2020 --> March/2021 --> )
This work was previously submitted to CVPR2021.

# --------------------------------------------
@inproceedings{zhang2021designing,
  title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
  author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
  booktitle={arxiv},
  year={2021}
}
# --------------------------------------------

"""

testsets = 'testsets'
testset_H = 'H_Image_Lora'
model_names = ['BSRGAN']
save_results = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def getModel():

    utils_logger.logger_info('blind_sr_log', log_path='blind_sr_log.log')
    logger = logging.getLogger('blind_sr_log')

#    print(torch.__version__)               # pytorch version
#    print(torch.version.cuda)              # cuda version
#    print(torch.backends.cudnn.version())  # cudnn version

    #testsets = 'testsets'       # fixed, set path of testsets
    #testset_H = 'H_Image_Lora'  # ['RealSRSet','DPED']

    #model_names = ['RRDB','ESRGAN','FSSR_DPED','FSSR_JPEG','RealSR_DPED','RealSR_JPEG']
    #model_names = ['BSRGAN']    # 'BSRGANx2' for scale factor 2



    #save_results = True
    sf = 4
    #device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    for model_name in model_names:
        if model_name in ['BSRGANx2']:
            sf = 2
        model_path = os.path.join('model_zoo', model_name+'.pth')          # set model path
        logger.info('{:>16s} : {:s}'.format('Model Name', model_name))

        # torch.cuda.set_device(0)      # set GPU ID
        logger.info('{:>16s} : {:<d}'.format('GPU ID', torch.cuda.current_device()))
        torch.cuda.empty_cache()

        # --------------------------------
        # define network and load model
        # --------------------------------
        model = net(in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=sf)  # define network

#            model_old = torch.load(model_path)
#            state_dict = model.state_dict()
#            for ((key, param),(key2, param2)) in zip(model_old.items(), state_dict.items()):
#                state_dict[key2] = param
#            model.load_state_dict(state_dict, strict=True)

        model.load_state_dict(torch.load(model_path), strict=True)
        model.eval()
        for k, v in model.named_parameters():
            v.requires_grad = False
        model = model.to(device)
        torch.cuda.empty_cache()
        
        return model
        
        '''
        for testset_L in testset_Ls:

            L_path = os.path.join(testsets, testset_L)
            #E_path = os.path.join(testsets, testset_L+'_'+model_name)
            E_path = os.path.join(testsets, testset_L+'_results_x'+str(sf))
            util.mkdir(E_path)

            logger.info('{:>16s} : {:s}'.format('Input Path', L_path))
            logger.info('{:>16s} : {:s}'.format('Output Path', E_path))
            idx = 0

            for img in util.get_image_paths(L_path):
                print('test print image')
                print(img)

                # --------------------------------
                # (1) img_L
                # --------------------------------
                idx += 1
                img_name, ext = os.path.splitext(os.path.basename(img))
                logger.info('{:->4d} --> {:<s} --> x{:<d}--> {:<s}'.format(idx, model_name, sf, img_name+ext))

                img_L = util.imread_uint(img, n_channels=3)
                img_L = util.uint2tensor4(img_L)
                img_L = img_L.to(device)

                # --------------------------------
                # (2) inference
                # --------------------------------
                img_E = model(img_L)

                # --------------------------------
                # (3) img_E
                # --------------------------------
                img_E = util.tensor2uint(img_E)
                if save_results:
                    util.imsave(img_E, os.path.join(E_path, img_name+'_'+model_name+'.png'))
        '''

import sys

def main(img):
    #print('main')
    #img = '/home/nvidia/BSRGAN/testsets/L_Image_Lora/Lincoln.png'
    try:

        OutPath = os.path.join(testsets, testset_H)
        img_name, ext = os.path.splitext(os.path.basename(img))

        img_L = util.imread_uint(img, n_channels=3)
        img_L = util.uint2tensor4(img_L)
        img_L = img_L.to(device)

        #model = getModel()
    
        img_E = model(img_L)
        img_E = util.tensor2uint(img_E)
    
        util.imsave(img_E, os.path.join(OutPath, img_name+'_' + 'H' + '.png'))
        print('written')
    except Interrupt:
        return

def RUN():
    import serial
    import time
    from os.path import join, dirname, realpath
    import os
    import threading
    import filetype


    port = serial.Serial(
        port='/dev/ttyUSB0',\
        baudrate=9600,\
        parity=serial.PARITY_NONE,\
        stopbits=serial.STOPBITS_ONE,\
        bytesize=serial.EIGHTBITS,\
        timeout=0
    )

    print('Connected to : ' + port.port)

    portBuffer = []

    recvTime = 0
    numPacket = 0
    imgNum = 0

    rand_name = 'image_' + str(time.time()) + '.jpg'
    path = join(join(dirname(realpath(__file__)), 'testsets/L_Image_Lora'), rand_name)

    f = open(path, 'wb')
    
    while True:
        try:
            dataShow = []
            while port.inWaiting() > 0:
                recvTime = time.time()
                readByte = port.read()
                portBuffer.append(readByte)
                dataShow.append(readByte)
                if len(dataShow) > 20:
                    dataShow = []
            time.sleep(1)

            if time.time() - recvTime > 4 and len(portBuffer) != 0:
                rand_name = 'image_' + str(time.time()) + '.jpg'
                imageBuffer = []
                imgNum += 1
                dataPath = join(join(dirname(realpath(__file__)), 'testsets/L_Image_Lora'), rand_name)
                print('len portBuffer: ', len(portBuffer))

                if f.closed:
                    print('closed')
                    f = open(dataPath, 'wb')
                for i in range(0, len(portBuffer)):
                    if i < len(portBuffer) - 5:
                        if portBuffer[i] == b'\x05' and portBuffer[i+1] == b'\x00' and portBuffer[i+2] == b'\x82':
                            numPacket += 1
                            for j in range(0, int.from_bytes(portBuffer[i+7], 'big') - 2):
                                imageBuffer.append(portBuffer[i+10+j])
                                f.write(portBuffer[i+10+j])
                print('Number of packet = %d' % numPacket)
                numPacket = 0
                print('image size = %d' % len(imageBuffer))
                if len(imageBuffer) < 100:
                    print('closed file')
                    nameFile = f.name
                    f.close()

                    kind = filetype.guess(nameFile)
                    if kind is None:
                        print('failed')
                    else:
                        print(kind.mime)
                        print('call high resolution module')
                        main(nameFile)

                portBuffer = []

        except KeyBoardInterrupt:
            print('Good bye')
            break




if __name__ == '__main__':
    param1 = '/home/nvidia/BSRGAN/testsets/L_Image_Lora/Lincoln.png'

    if len(sys.argv) > 1:
        param1 = sys.argv[1]
    
    model = getModel()

    #main(param1)

    RUN()

Tài liệu tham khảo

Internet

Hết.