Tìm hiểu về SVM
Tìm hiểu SVM
Kiến trúc cơ bản của SVM
Cài đặt cơ bản
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import numpy as np
class SVM:
def __init__(self, learning_rate = 0.001, lambda_param = 0.01, n_iters = 1000):
self.lr = learning_rate
self.lambda_param = lambda_param
self.n_iters = n_iters
self.w = None
self.b = None
def fit(self, X, y):
y_ = np.where(y <= 0, -1, 1)
n_samples, n_features = X.shape
self.w = np.zeros(n_features)
self.b = 0
for _ in range(self.n_iters):
for idx, x_i in enumerate(X):
# chi so, value
condition = y_[idx] * (np.dot(x_i, self.w) - self.b) >= 1
if condition:
self.w -= self.lr * (2 * self.lambda_param * self.w)
else:
self.w -= self.lr * (2 * self.lambda_param * self.w - np.dot(x_i, y_[idx]))
self.b -= self.lr * y_[idx]
def predict(self, X):
linear_output = np.dot(X, self.w) - self.b
return np.sign(linear_output) # tra ve dau cua ket qua
Plot dữ liệu chi tiết
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
X, y = datasets.make_blobs(n_samples = 500, n_features = 2, centers = 2, cluster_std = 1.05, random_state = 40)
y = np.where(y == 0, -1, 1)
clf = SVM()
clf.fit(X, y)
print(clf.w, clf.b)
def visualize_svm():
def get_hyperplane_value(x, w, b, offset):
return (-w[0] * x + b + offset) / w[1]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
plt.scatter(X[:, 0], X[:, 1], marker = 'o', c = y)
x0_1 = np.amin(X[:, 0])
x0_2 = np.amax(X[:, 0])
x1_1 = get_hyperplane_value(x0_1, clf.w, clf.b, 0)
x1_2 = get_hyperplane_value(x0_2, clf.w, clf.b, 0)
x1_1_m = get_hyperplane_value(x0_1, clf.w, clf.b, -1)
x1_2_m = get_hyperplane_value(x0_2, clf.w, clf.b, -1)
x1_1_p = get_hyperplane_value(x0_1, clf.w, clf.b, 1)
x1_2_p = get_hyperplane_value(x0_2, clf.w, clf.b, 1)
ax.plot([x0_1, x0_2], [x1_1, x1_2], 'y--')
ax.plot([x0_1, x0_2], [x1_1_m, x1_2_m], 'k')
ax.plot([x0_1, x0_2], [x1_1_p, x1_2_p], 'k')
x1_min = np.amin(X[:, 1])
x1_max = np.amax(X[:, 1])
ax.set_ylim([x1_min - 3, x1_max + 3])
plt.show()
visualize_svm()
Link tham khảo
Tài liệu tham khảo
Machine learning cơ bản
Hết.